MONITORING IMPACTS of CLIMATE CHANGE

on

BUILT HERITAGE

Report of the ICOMOS Ireland Climate Change Sub-Committee

January 2010

Abbreviations	3
1. BACKGROUND	
1.1 Introduction	4
2. SITE EVALUATIONS	5
2.1 Brú na Bóinne	5
2.1.1 Description	5
2.1.2 Values	
2.1.3 Vulnerability Modeling	8
2.2 Clonmacnoise	10
2.2.1 Description	10
2.2.2 Values	12
2.2.3 Vulnerability Modeling	12
3. RECOMMENDATIONS	
3.1 Climate Monitoring	13
3.1.1 Met Éireann Sensors for Brú na Bóinne	14
3.1.2 Commercial Alternatives	15
3.2 Impact Monitoring	16
3.2.1 Biodiversity	17
3.2.2 Peatland Deterioration	19
3.2.3 Stone -Surface Erosion	19
3.2.4 Stone - Internal Stresses	20
3.2.5 Stone Characterisation	21
3.2.6 Flooding	
3.2.7 Groundwater	
3.2.8 Plough Damage	23
3.2.9 Dehydration Damage	24
3.2.10 Collapse & Subsidence	
3.2.11 Biological Action	24
4. DISSEMINATION OF RESULTS	25
5. COSTS & REQUIREMENTS	
6. CHALLENGES	
7. BENEFITS	
APPENDIX 1. Causal model of vulnerability of Brú na Bóinne	
to predicted climate change to 2099.	34
APPENDIX 2. Causal model of vulnerability of Clonmacnoise to predicted clim	ate
change to 2099.	
REFERENCES	
SUPPLIERS	
	42

TABLE OF CONTENTS

Abbreviations

DoEHLG	Department of the Environment Heritage and Local Government
EPA	Environmental Protection Agency
EU	European Union
ICOMOS	International Council on Monuments and Sites
IPCC	Irish Peatland Conservation Council
ME	Met Eireann
NBDC	National Biodiversity Data Centre
NUI	National University of Ireland Maynooth
OPW	Office of Public Works

1. BACKGROUND

International research relating to the measurement and monitoring of the effects of climate change on the built heritage is in its infancy and mainly deals with theoretical rather than practical perspectives. The ICOMOS Ireland climate change sub-committee was convened in the summer of 2008, its stated aim was to research the effects of Climate Change on the Built Heritage and in particular our World Heritage Sites. Following discussions with the Department of Environment Heritage and Local Government (DoEHLG) on the terms of reference and scoping of the research the DoEHLG requested ICOMOS to provide recommendations on monitoring solutions for impacts of climate change on built cultural heritage. The department provided ICOMOS Ireland with financial assistance to enable research on two specific sites of World Heritage/proposed World Heritage standard; Brú na Bóinne and Clonmacnoise. The following is a report of the findings of the ICOMOS sub-committee, focusing on its recommendations for monitoring possible climate change affects on the two sites.

The ICOMOS Ireland sub-committee on climate change is convened by Peter Cox and its members are Cathy Daly, Ann Cuffe Fitzgerald, Brandy Dubs and Dr. Tracy Pickerill.

The author of this report is Cathy Daly.

1.1 Introduction

Climate change predictions for Ireland over the coming century suggest we will experience warmer, wetter winters and warmer, drier summers.¹ There will be some regional variations however, and these will be observable at the case study sites (Table1).

Modeling the impacts of global climate change on Europe's built heritage has been conducted by the EU funded Noah's Ark project. The resultant publication of a vulnerability atlas for built heritage in Europe theoretically maps how climate change effects will develop over the next century.² Research on climate change in Ireland has not dealt specifically with built heritage to date but much of the work has nonetheless proved useful in assessing possible impacts on cultural landscapes.³

¹ Sweeney 2003 ² Sabbioni et al 2010

³ In particular a series of reports produced for the EPA by Prof. Sweeney at NUI Maynooth.

Table 1. Summary of climatic changes predicted by 2099 using ICARUS ensemble data for Dublin Airport & Birr (A2 emissions scenario)⁴

	Average	Average	Average	Intensity of	Wind Gusts
	Temperature	Summer	Winter	Rainfall	(frequency
		Rainfall	Rainfall		and intensity)
		(July)	(December)		
Clonmacnoise	↑ 2ºC	↓ 24%	↑ 19%	↑ 23%	↑ (not
		(12mm)	(15mm)	(days >5mm)	modelled)
Brú na Bóinne	↑ 2ºC	↓ 30%	↑ 24%	↑ 15%	↑ (not
		(14mm)	(19.5mm)	(days >5mm)	modelled)

The impacts of predicted climate change will be both direct, such as flooding and erosion, and indirect, such as changes in agricultural practices. The interactions involved are complex and often depend on more than one climatic parameter (figure 1). The monitoring scheme being proposed by ICOMOS will form a legacy for the future, producing quantifiable data over the coming century, which is vital in the assessment of climate change impacts on cultural heritage. In turn this will facilitate the development of appropriate and sustainable management practices for climate change impact mitigation and adaptation at these and other heritage sites in Ireland. The establishment of a pilot monitoring scheme will also be a substantial contribution to knowledge, placing Ireland at the fore-front of research in this area.

2. SITE EVALUATIONS

2.1 Brú na Bóinne

2.1.1 Description

Brú na Bóinne is one of two World Heritage sites in the Republic of Ireland. It is located in the north-east, 9km from the coast at Drogheda. The core and buffer zone cover approximately 3,300 hectares encompassing 93 recorded monuments protected under national heritage legislation. Characterised by the bend in the River Boyne where it encounters a hard shale ridge the area also includes several wetland habitats and rare

⁴ Fealy 2007

Plate 1: Location of Brú na Bóinne and Clonmacnoise

Brú na Bóinne

Clonmacnoise

species protected under both EU and national legislation.⁵

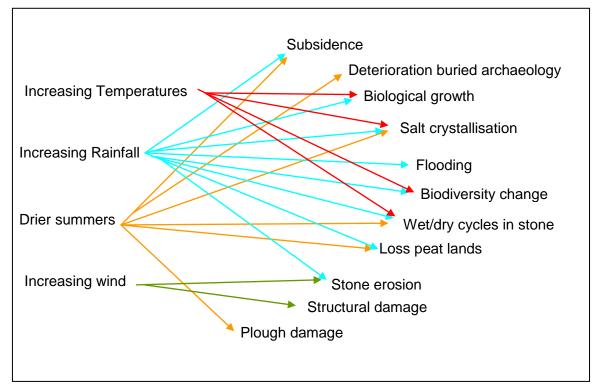


Figure 1. Multiple Interactions: Climate change factors and impacts

There are 31 known Megalithic passage graves at Brú na Bóinne, dating to the time around 3,000 BCE. Many of the large stones used to construct the passage, chamber, and placed around the exterior of the mound are carved with designs. The majority of the stone used by Neolithic builders is greywacke or green grit, a Palaeozoic sandstone. There are 400 known pieces of rock art from Brú na Bóinne and when this is compared to only 200 from all similar sites in Western France the importance of the site for Megalithic art is clear.⁶ The cultural landscape of the site spans the history of human habitation of Ireland, from Neolithic flint scatters to World War II defenses⁷. Some of the most significant elements include the Battle of the Boyne site and Ireland's earliest inland canal system.

⁷ Dúchas The Heritage Service 2002

⁵ Protected sites include Natural Heritage Areas under Wildlife Amendment Act 2000 and Special Areas of Conservation under Annex I (habitats) & Annex II (species) of the EU Habitats Directive 1992.

⁶ Eogan 1986.

2.1.2 Values

In 1993 ICOMOS recommended the Archaeological ensemble of the Bend of the Boyne for World Heritage listing under three of UNESCO's criteria for Outstanding Universal Value (OUV):⁸

<u>Criteria i</u>: As a *masterpiece of human creative genius* for the **Megalithic rock art** collection.

<u>Criteria ii:</u> Because it *exhibits an important interchange of human values over a span of time.* In particular the archaeological and extant remains that indicate continuity of settlement from the Neolithic to Late Medieval period, in modern terms the **Cultural Landscape**.

<u>Criteria iv:</u> As an outstanding example...which illustrates a significant stage in human history for the **Megalithic passage grave assemblage**.

2.1.3 Vulnerability Modeling

The Vulnerability model (Table 2) will produce values for each heritage value to those impacts hypothesised to be most pertinent.

Climatic	Sector or	Impact	Indicator	Sensitivity	Exposure	Adaptive	Measure of
Factor	W. H.					Capacity	Vulnerability
	Value						
Increased	Cultural	Flooding	XY ⁹	1 - 3	1 - 3	1 - 3	Calculated as
rainfall	Landscape						per below
(winter)							equation

Source: Daly 2009

The data inputted into the table is based on information gathered from research and stakeholder interviews. Values are assigned for sensitivity, exposure and adaptive capacity on a sliding scale of 1-3.¹⁰ This is done in the case of each heritage value to every predicted climate change impact that may be relevant. The measure of vulnerability can then be calculated using the formula:

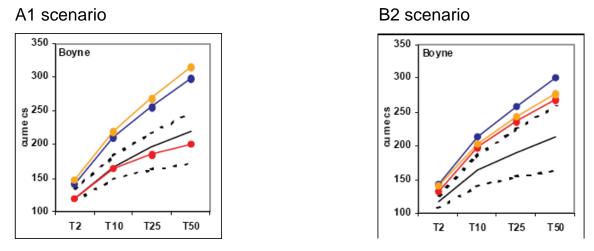
⁸ ICOMOS 1993

⁹ XY represents any indicator i.e. any quantifiable variable that can be used as proxy for assessing sensitivity, exposure or adaptive capacity, Schroter et al 2005.

¹⁰ Based on Vulnerability Assessment methodology developed by Schroter et al 2005

Vulnerability = (Sensitivity + Exposure) – Adaptive Capacity

Where quantifiable indicators are available these help to establish values. In many cases suitable indicators are not available and stakeholder feedback is used as a means to verify results produced by the model.¹¹ The preliminary vulnerability assessment for Brú na Bóinne (Appendix 1) identifies areas which are expected to be most affected by climate change and are a priority for monitoring (Table 3). The time scale adopted is the one used by the ICARUS climate change model i.e. to the end of this century.


Plate 2. View of cultural landscape at Brú na Bóinne (photo C. Daly 2008)

¹¹ Daly 2009

Figure 2. Changes in the magnitude of selected Boyne flood events for each future time period under the A2/B2 emissions scenarios = doubling by end century

- Control - 2020s - 2050s - 2080s

Source: Sweeney et al 2008

OUV:	Rock Art	Megalithic Monuments	Cultural Landscape
Impacts for which Vulnerability is High	 Wet-dry cycles Salt crystallisation 	• Flooding	 Flooding Changes to biodiversity Plough damage
Impacts for which Vulnerability is Medium	 Biological growth 	 Collapse (saturation) 	 Reduction in water levels

Source Daly 2009

2.2 Clonmacnoise

2.2.1 Description

The Monastic City of Clonmacnoise Co. Offaly and its Cultural Landscape is a candidate World Heritage Site. The proposed World Heritage property has a core zone of 2,903 hectares and a further 7,443 hectares in the buffer zone. The site is located in the centre of Ireland at an ancient crossroads. This was the meeting of the North-South routeway

of the Shannon and the East-West tracks that follow raised glacial eskers (still used today for roads) through the bogland. The bogs and fens of this semi-natural landscape are important habitats for many rare and endangered species of flora and fauna and several areas are protected under EU and National legislation.¹²

Plate 3. View of Monastic enclosure at Clonmacnoise (photo C Daly 2009)

The relict monastic city of Clonmacnoise is a well preserved example of a medieval monastic civitas including several important early building types. The structures are built from a combination of limestone, sourced locally at the Rocks of Clorhane, and sandstone. The site declined after the twelfth century and the archaeological remains are therefore largely undisturbed and offer important evidence for pre-Viking proto-urban settlement in Ireland. The collection of cross slabs, which is the largest in Europe, and the carved stone crosses demonstrate that Clonmacnoise was an artistic centre during the period of Europe's Dark Age.

¹² Similarly to Brú na Bóinne the site contains protected Natural Heritage Areas and Special Areas of Conservation in addition to Special Protection Areas (EU Habitats Directive 1992).

2.2.2 Values

The 2009 DoEHLG draft Management Plan proposes the site for World Heritage listing under two of UNESCO's criteria for Outstanding Universal Value (OUV):

<u>Criteria iv</u>: As an outstanding example...which illustrates a significant stage in human *history* i.e. Early Medieval monastic city, for the **architectural ensemble**.

<u>Criteria v:</u> As an outstanding example of traditional human settlement, land use...representative of...human interaction with the environment for the cultural landscape.

2.2.3 Vulnerability Modeling

The Vulnerability model (Appendix 2), produced in the same manner as that for Brú na Bóinne, calculated vulnerability for each heritage value to those impacts hypothesised to be most pertinent. The preliminary assessment identified areas which are expected to be most affected by climate change and are a priority for monitoring (Table 4).

OUV:	Architectural ensemble	Cultural Landscape
Impacts for which Vulnerability is High	 Flooding Biological growth Mechanical weathering Wet/dry cycling 	 Flooding Changes to biodiversity Decomposition of peatlands
Impacts for which Vulnerability is Medium	 Salt crystallisation Clean rain dissolution 	SubsidenceErosion

Table 4. Key Impacts Clonmacnoise to 2099.

Source: Daly 2009

3. RECOMMENDATIONS

Two types of monitors required:

- 1. Climate Monitoring recording detailed information on the local climate
- 2. Impact Monitoring recording the effects of climate as manifested at each site

Relating the two sets of data will enable quantification of climate change effects. A standard set of climate monitors should be installed at both sites (see below). Recommendations for *site specific impact monitors* based on the results of the vulnerability analyses have been made in Table 5. These vary slightly between the two sites due to variations in their identified vulnerabilities. All monitoring solutions must be capable of continued operation until 2099. The final selection of monitors, their placement on site and the protocols for data management all require Office of Public Works (OPW) and Department of the Environment, Heritage and Local Government (DoEHLG) staff involvement. (Note installation of the equipment and any associated cabling may require Ministerial Consent under the National Monuments Acts)

3.1 Climate Monitoring

On site climate recording is recommended to include rainfall, relative humidity, temperature, wind (speed & direction) and solar radiation. When climate sensors are chosen, it is vital that the standards of accuracy and format set out by Met Éireann (see below) are observed. These standards are internationally recognised and will allow comparison with other data sets making the results of the study of wider scientific value.¹³ In addition it was agreed with Met Éireann that climatic data that meets these standards could be sent to them for quality control and archiving, ensuring it is widely available over the long term.¹⁴

Met Éireann have expressed their interest in the possibility of establishing a synoptic¹⁵ station at Brú na Bóinne if the DoEHLG could fund the initial cost (€ 25,000) and if

¹⁵ Synoptic stations record meteorological elements on an hourly basis, such as air temperature, rainfall, humidity, vapour pressure, wind speed, wind direction and atmospheric pressure. Some have extra elements such as soil temperatures, weather, cloud, visibility and sunshine.

¹³ For more see World Meteorology Organisation measuring standards 2008.

¹⁴ David Fitzgerald & Seamus Walsh Met Éireann personal communication

permanent planning permission were secured. The running costs and data management would subsequently be covered by Met Éireann. For Clonmacnoise it was felt by Met Éireann¹⁶ that the nearby station of Gurteen served to cover the region and it would therefore not be sustainable for them to place a station on site. Commercial alternatives are available in the form of automatic weather stations; Campbell Scientific and Vaisala are two reputable companies which supply in Ireland.¹⁷

3.1.1 Met Éireann Sensors for Brú na Bóinne¹⁸

The possible installation of a Met Éireann Tucson synoptic station at Brú na Bóinne is dependent on planning permission. Synoptic stations include a wind mast (measures speed and direction) two rain gauges, relative humidity and temperature sensors, global radiation sensors and earth and soil temperature sensors. The wind mast is 10m high and requires 20:1 ratio between height of mast and surrounding area (i.e. nothing within 200m that can obscure wind) and a 1m³ approx. reinforced concrete foundation plinth. The station requires a 10x10m fenced area and power cables.

The following list details specifications for Met Éireann sensors:19

Wind Measurements

Type: Vector A100L Low Power anemometer. (+/- 2 knots)

Vector W200P Potentiometer windvane. (Degrees +/- 5)

Sampling interval every 0.25 seconds, wind direction discontinuity calculated using tan^-1 of vector co-ordinates.

Temperature measurements

Type: 8 mm PRT (DIN 1/10) (+/- 0.1 ° C) with a time constant of approximately 35 seconds

Sampling interval every 15 seconds.

Averaging a one minute average of a running average of 12 raw values.

Humidity Measurements:

Estimated daily evaporation, potential evapotranspiration and soil moisture deficits are also available (www.met.ie).

¹⁶ David Fitzgerald & Seamus Walsh Met Éireann personal communication.

¹⁹ As above

¹⁷ As above

¹⁸ David Fitzgerald Met Éireann personal communication.

Type: Vaisala HMP45D capacitive sensor. (+/-2 %) Vaisala HPM234 Heated dew point sensor. (+/-2 %)

Sampling interval : 15 seconds.

Averaging a one minute average of 4 raw values

Rain measurement

Type: Castella tipping rain gauge, 0.1 mm and 0.2 mm (+/- 0.1 mm) **Sampling Interval**: As the gauge tips during a 0.25 second interval

Solar Radiation:

Type: 2 x Kipp&Zonen CM6 (J/M^2) sensors are calibrated against a standard. **Sampling interval:** 5 second

3.1.2 Commercial Alternatives

The purchase of a commercial weather station is required for Clonmacnoise and may also be considered as a more cost effective solution for Brú na Bóinne. There are readily available automatic climate stations, ICOMOS has obtained quotes from Campbell Scientific and has also made contact with the Vaisala representative in Ireland. Met Éireann have offered to provide advice prior to any purchase to ensure the sensors are appropriate. Quality commercial automatic stations include all the parameters outlined and can also achieve the accuracy levels required.

<u>Rainfall</u>: In addition to standard volume measurements there are commercially available monitors which measure duration and intensity. While this is felt to be a desirable parameter the cost of such a monitor (starting at \in 3,400) may be prohibitive at this point.²⁰

<u>Wind:</u> Historic Scotland at Smailholm Tower used a Vaisala WXT 510 sensor to monitor wind speed and direction. When it was fixed to the top of a gable they found it to be relatively insignificant visually.²¹ This type of wind measurement may provide locally

²⁰ OTT Hydrometry Ltd.

²¹ Peter Ranson Historic Scotland personal communication

significant data but would not be considered reliable by Met Éireann due to interference or 'surface roughness' variables (they require a 10m mast).²²

Plate 4. Weather station, archaeological site, Malta (photo K. Blackwood 2009)

3.2 Impact Monitoring

In order to study how climatic change is impacting on the stated World Heritage values at both sites, it is necessary to create a suite of tailored impact monitoring solutions (Table 5). Slight variations between each sites' vulnerabilities are reflected in the choice of tools. Wherever possible existing data collection schemes (e.g. OPW hydrometric gauges), or partnership opportunities, have been recommended in preference to establishing new systems on site. The aim is to create a sustainable network of monitors that minimises ongoing maintenance and staffing demands at the two sites.

Table 5. Impact Specific Monitors Recommended

²² Discussed at ICOMOS & Met Éireann meeting November 2009

Frequency	Impact at Brú na Bóinne	Impact at Clonmacnoise
5-10 year intervals	Plough damage, subsidence,	Subsidence, erosion.
	erosion.	
As above	Wet/dry, salts, biological	Salts, biological growth,
	growth, mechanical erosion.	mechanical erosion.
As above	Subsidence, collapse.	Subsidence, collapse, wind
		damage.
As above	Biodiversity, biological	Biodiversity, biological
	growth.	growth & sphagnum moss.
Once	Salts, wet/dry, chemical &	Salts, wet/dry, chemical &
	mechanical erosion.	mechanical erosion.
Annual	All observable changes	All observable changes
Daily (automatic) or	Archaeological preservation.	Peat lands, archaeological
monthly (manual)		preservation.
Annual	Salts & wet/dry cycles.	Salts & wind driven rain.
Monthly	Flooding, subsidence.	Peat lands, flooding,
		subsidence.
Event led	River flood	River flood
Daily (manual)	Biodiversity	Biodiversity
	As above As above As above Once Once Annual Daily (automatic) or monthly (manual) Annual Monthly Event led	erosion.As aboveWet/dry, salts, biological growth, mechanical erosion.As aboveSubsidence, collapse.As aboveBiodiversity, biological growth.OnceSalts, wet/dry, chemical & mechanical erosion.AnnualAll observable changesDaily (automatic) or monthly (manual)Archaeological preservation.AnnualSalts & wet/dry cycles.MonthlyFlooding, subsidence.Event ledRiver flood

3.2.1 Biodiversity

Moths and Butterflies:

Lepidoptera are recommended as indicators of climate change as they are relatively easy to identify and contain a large number of species which are indicators of various habitat types. A study of the first dates of appearance of the adults, and the number of

generations per year would also provide useful comparative data.²³ ICOMOS strongly recommends partnering with the National Biodiversity Centre to locate Rothamsted moth traps at the visitor centres on both sites.²⁴ These traps require an electricity supply and one staff member approximately 5-10 minutes to empty every day. The samples are analysed in England free of charge (an annual donation would be appreciated to sustain the project) and results interpreted by the Biodiversity Centre. Ken Bond of UCC worked on a survey of Moths & Butterflies of Clonmacnoise in 1987 and periodic re-running of the survey would also demonstrate how species may have changed.²⁵ In addition, the Biodiversity Centre run the Irish Butterfly Monitoring Scheme which could be developed in conjunction with local volunteers and promoted through both the visitor centres.²⁶

Flagship Species:

- Atlantic salmon in the Boyne are near their southern limits and any rise in water temperature could greatly affect their spawning. Increased soil run-off due to erosion following dry summers and heavy rainfall causes sedimentation of the river bed that also inhibits spawning. In addition to being a protected species for biodiversity, salmon in the Boyne have a high cultural value. In the Fianna mythological cycle the salmon of knowledge was caught in the Boyne and the High Kings traditionally ate Boyne salmon at the feast of Lughnasa. Today angling continues to be an important activity for the local area. The salmon population is already monitored by the Standing Scientific Committee of the National Salmon Commission and there is a fish counter on the River Boyne at Blackcastle Weir that provides information on the adult run.²⁷
- Corn-crakes are a globally endangered migratory species which breed in the • Shannon Callows. Their numbers are already thought to have been affected by unseasonable flooding of the nest sites.²⁸ The key issue to monitor in future is arrival and departure dates. There is data on departure dates for corncrakes from the Shannon Callows region for 2001-3. In addition the dates calling males

²⁸ Draft Management Plan Clonmacnoise p. 107

 ²³ Mary Tubridy and Associates personal communication
 ²⁴ Eugenie Regan National Biodiversity Centre personal communication

²⁵ Bulletin of the Irish Biogeographical Society

²⁶ http://irishbutterflymonitoringscheme.biodiversityireland.ie/

²⁷ www.dcenr.gov.ie

were first reported to Bird Watch Ireland by the general public are kept by the office in Banagher, though this is subjective data.²⁹

3.2.2 Peatland Deterioration

Bogs are extremely vulnerable to climate change, Jones has predicted that in Ireland we will lose 31% of raised bogs by 2055 due to climate change.³⁰ An Taisce advised ICOMOS that water levels in the bog would be the most relevant parameter to examine, and the annual cycle of drying and wetting of the peat. Ideally they recommend both physical and biological monitoring.³¹ The Irish Peatland Conservation Council monitor water levels to ensure they are within 30cm of the surface for most of the year as this is the threshold depth required for sphagnum mosses to survive. They suggest a combination of monitoring hydrology on a monthly basis and monitoring vegetation (% sphagnum cover) by surveying the site every 6-10 years.³² Simple wells can be made using plastic pipes inserted in the peat and levels checked by hand with a dip stick or 'plopper' (weighted string).³³

3.2.3 Stone -Surface Erosion

Erosion of stone surfaces may be mechanical (e.g. salt crystallisation) or chemical (e.g. rain water dissolution of limestone). Accurately monitoring the incremental loss of surface is problematic but advances in laser scanning technology are currently providing the best results. ICOMOS recommends that surface loss of micro-detail on selected stones be periodically quantified using laser scanning.³⁴ This must be accompanied by more comprehensive photography and condition reporting conducted on an annual basis across the sites by OPW or DoEHLG staff. Photographic recording should be by rectified photography (photogrammetry) and supplemented by measured drawings to archive conservation standards. Photographic surveys must be archived consistently for deterioration monitoring. It is vital that all the survey methods may be accurately re-

³⁴ http://www.qub.ac.uk/greening/laser.html (29.09.09)

²⁹ Anita Donaghy, Birdwatch Ireland personal contact

³⁰ Jones et al 2006

³¹ Anja Murray An Taisce personal communication

³² Richella Duggan IPCC personal communication

³³ http://www.ipcc.ie/diymanmonitoring.html

produced at different times and by different staff members; therefore clear protocols are extremely important from the start.

3.2.4 Stone - Internal Stresses

Moisture enables 80% of all decay mechanisms in stone and any increase in moisture levels will have a detrimental effect on masonry. Masonry is porous by nature and this tends to increase with age. Predictions for longer wetting periods, increasing cycles of wetting/drying and increased wind driven rain will cause greater loss of surface material.

Plate 5. Shattered kerb stone, Knowth (photo C Daly 2009)

Internal stresses caused by salt crystallization, wet/dry cycling and thermal expansions are difficult to monitor until the damage is manifested by a change in the surface condition – such as efflorescence, granulation and/or spalling. Changes in moisture content in walls is a key indicator of these impacts yet there is currently no satisfactory monitoring solution. At Smailholm Tower Dr Paul Baker of Glasgow Caledonian University inserted sensors beneath turf capping on walls to detect moisture based upon capacitance. This system is not suitable for the body of a wall or for monoliths however. While new systems are being developed and tested, the best Historic Scotland could

recommend is wooden dowels set into the walls that change weight according to moisture levels.³⁵ These only give comparative readings and not absolutes, they are also destructive to install. Measuring moisture levels in masonry non-destructively is difficult, the three options are:

- Thermo Imaging
- Rilem Tube Test
- Laser Scanning

All the above would require a bench mark record to re-measure on an annual basis, these would need to be at predetermined locations and fully accessible.

3.2.5 Stone Characterisation

Stone deterioration has many potential causes as outlined above. In order to diagnose the most likely source of any damage it is necessary to understand the sensitivities of the stone in question. In the case of salt crystallisation for example, the porosity and the soluble salt content of the stone are key indicators of vulnerability to this impact. ICOMOS therefore recommends that laboratory testing of the greywhacke from Brú na Bóinne and the sandstone and limestone from Clonmacnoise be carried out with this specific purpose in mind. Characteristics of interest include; soluble salt content, porosity, abrasion resistance, clay content, pore size, laminar structure.

3.2.6 Flooding

The OPW are in the process of undertaking the Catchment Flood Risk Assessment and Management scheme for areas at potential risk from flooding (including cultural assets). The flood risk maps are due to be completed by 2013.³⁶ Historic data for daily measurements of water flow and levels on the Boyne and Shannon are available on the OPW website.³⁷ In the future it is intended that real-time data will also be available on this website and this would allow access to current flow and level information, providing an indication of the risk of flooding.³⁸ For Clonmacnoise the relevant stations are Athlone (upstream) and Shannonbridge (downstream). For Brú na Bóinne the nearest gauge is at Slane Castle (upstream). The EPA has an automated water level gauge on

³⁵ Rob Thomson Historic Scotland personal communication

³⁶ Mark Adamson OPW personal communication ³⁷ http://.opw.ie/hydro

³⁸ Peter Newport OPW personal communication

the pedestrian bridge at the Brú na Bóinne visitor centre. The data is downloaded periodically although if funding was made available it could be live streamed.³⁹ The OPW and EPA gauges provide an indication of flood risk but it is vital that there is also on-site monitoring of the reach of flood waters, providing information on the actual impact. Monitoring should include installation of level gauges (at Clonmacnoise only) from which maximum water levels can be read. In addition the flood extent at both sites should be mapped & recorded. Photographic and documentary records could be strengthened by the implementation of a simple set of spaced markers from which the flood extent can be quickly assessed (e.g. 10 markers 5m apart perpendicular to river bank). Condition reporting in the aftermath of a flood would be seen as part of flood monitoring, factors such as pollution and erosion would need to be assessed when the waters recede.

Plate 6. Knowth and the flooding Boyne (image by DoEHLG)

³⁹ Micheal MacCarthaigh EPA personal communication

3.2.7 Groundwater

The EPA currently has a groundwater monitoring programme in operation around the country but none in the area of the two sites. The GSI also have a number of historical borehole water level records but none of these are located near Clonmacnoise or Brú na Bóinne either. In order to monitor the water table, wells in the area could be selected, ideally in partnership with the EPA, and dipped regularly using one of the available tools.⁴⁰ Alternatively a permanent monitor can be installed in a bore hole to produce automatic readings. Groundwater readings will relate to flooding, subsidence, peat-land deterioration and impacts on buried archaeology.

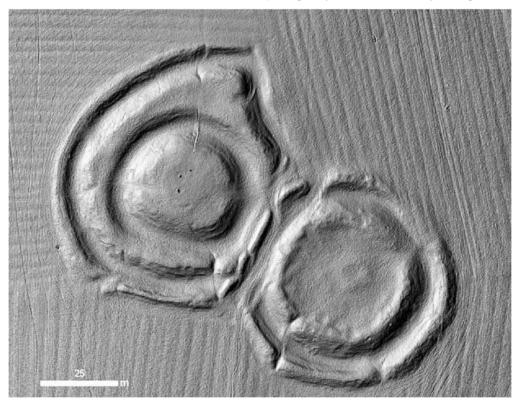


Plate 7. Lidar scan of the Hill of Tara (Image by The Discovery Programme)

3.2.8 Plough Damage

Predicted climatic change over the next century may lead to arable farming becoming the dominant form of agriculture in the east of Ireland.⁴¹ This will expose buried archaeological remains to a greatly increased risk from plough damage. In Brú na Bóinne where the majority of the archaeological resource is on private farmland, close to

⁴⁰ Personal communications Dr. Caoimhe Hickey GSI & Tom O'Reilly EPA

⁴¹ Sweeney et al 2003

the surface and susceptible to such damage (earth works, paleo-environmental evidence) this is of major concern. Archaeological field survey conducted in selected 'at risk' areas at regular intervals would provide comparative data on any such damage. This type of survey is limited by its detailed nature to small sections of the large landscape protected at both sites. For this reason it is suggested the ground work be supplemented by an aerial survey such as Lidar (light detection and ranging) mapping. Lidar mapping of parts of Meath including the Boyne valley were carried out in 2007-8.⁴² Repetition of Lidar at regular intervals would yield valuable detail about the general condition of the whole site in addition to monitoring plough damage.

3.2.9 Dehydration Damage

Dehydration of the soil during hotter drier summers will place ongoing preservation of buried archaeological remains in question. Organic preservation, both of artefacts and environmental evidence, relies on waterlogged soils. In addition there is some concern that drying of soils may cause destabilisation of some monuments e.g. loosening of standing Megaliths/orthostats. It is therefore proposed that soil-moisture should be monitored on a permanent basis at a few key areas where such impacts are of most concern to site management/archaeologists. Soil moisture can be calculated by automatic sensors at the climate stations or by using manual soil moisture monitors. The latter have the advantage that they can be used in several locations, independent of the climate station.

3.2.10 Collapse & Subsidence

ICOMOS suggests that regular structural surveys of the monuments be carried out to monitor physical effects related to climate change including wind and rain, namely subsidence and collapse. This would be complemented by other monitoring such as the Photogrammetric survey, Lidar survey and the water table levels, to provide an accurate picture of threats to the structures under protection.

3.2.11 Biological Action

Biological action includes the surface damage (mechanical, chemical and aesthetic) of stone by micro-biological fungi and algae as well as damage by larger plants and animals. Climate change is likely to cause a variation in the species present and in the

⁴² Heritage Council & Meath County Council.

growth patterns of existing species. Conducting a species survey at regular intervals (e.g. 5-10 years) would provide information on how this biological profile is changing. This information, in conjunction with regular condition assessments (laser scans, photography etc.) will provide a picture of the threats from biological action.

Plate 8. Biological growth on wall, Clonmacnoise (Photo C Daly 2009)

4. DISSEMINATION OF RESULTS

The information that will be gathered by the on-site monitors is a valuable resource and provides a unique opportunity to enhance the visitor experience at both sites while also raising public awareness about climate change. The sub-committee therefore suggest that the project be allocated a dedicated web address and that results be published online (in real time where feasible). It also proposes that screens should be installed in the interpretive centres at both sites to display the climate data as a live stream. Providing live information will create an interaction between the visitor and the site, engaging and hopefully stimulating them to think about heritage and climate change in new ways. Creation of an online resource would subsequently allow visitors to return to the site 'virtually' and would also ensure a much higher awareness of the project. The

wider messages of climate change (impacts, adaptation and mitigation) can all be delivered through the novel medium of cultural heritage conservation. In November 2009 the members of the sub-committee submitted a funding application to the Heritage Council for this aspect of the project.

5. COSTS & REQUIREMENTS

5.1 Summary

The summary of costs for each site is presented in Table 6 and a detailed breakdown of the individual requirements along with the cost of possible options are given in Table 7. Accurate figures are only possible in respect to capital outlay on equipment. In the case of specialist services, such as the structural or species surveys, individual quotations will have to be sought. Estimates have been made for the number of man hours involved and it is important to note that this includes a substantial amount that could be undertaken by committed volunteers (where they are available).

	Climate	Impact Monitors ⁴³	Specialist	Man hours ⁴⁴
	Station		Services	
BRÚ NA BÓINNE				
Option A	€5,000	€1,500	To be negotiated	3.5 days/month
Option B	€25,000 ME Tucson station	€1,300 (static soil moisture calculated at synoptic station)	As above	3 days/month (Climate station managed by Met Éireann)
CLONMACNOISE				
Option A	€5,000	€2,300 (additional costs of river gauge & peat water level)	As above	4 days/month (additional time req. for peat water levels)

Table 6. Cost Summary Table

⁴⁴ No differentiation is made here between paid staff and volunteer hours.

⁴³ Voluntary annual donation towards the Rothamsted moth traps project is not included in this figure.

Monitor	Specifications	Data management	Cost/site
CLIMATE			
Met Éireann Tucson	High spec. station to	Station	€25,000
climatological and	WMO standards	management by	
synoptic station (Brú		Met Éireann	
na Bóinne only)			
Rainfall	0.1-0.2mm accuracy	Downloaded by	€454 (Campbell
	required by Met	local staff. Archived	Scientific ARG100 &
	Éireann (ME).	by ME. Published	base plate)
	Intensity and	online & at	€3,407 (OTT Pluvio
	duration desirable	interpretive centres	2; duration &
			intensity gauge)
Temperature	+/- 0.1 ° C accuracy	As above.	€344 (Campbell
	by Met Éireann		Scientific CS215 &
			shield) but accuracy
			+/- 0.3 ° C
			€580 (Vaisala
			HMP45C & shield)
			accuracy +/- 0.2 ° C
Relative humidity	+/-2% accuracy by	As above	RH measurement of
(RH)	Met Éireann		+/-2% accuracy
			included in above
			sensors; best range
			with HMP45C

 Table 7. Climate and Impact Monitoring Specifications

Monitor	Specifications	Data management	Cost/site
Wind	Direction & speed.	As above for	€730 (Campbell
	ME specifications	Tucson station. For	RS232 anemometer
	(detailed previously)	non-standarised	& mount)
	are unlikely to be	anemometer	
	met by commercial	downloading on site	
	sensor	and archiving by	
		OPW. Publish as	
		above	
Accessories	Data logger,		€3,039 (Campbell
	enclosures, power		Scientific)
	supply, software		
	and		
	communications		
	devices are all		
	priced separately		
	with commercial		
	stations (all included		
	in Tucson station)		
Additional costs			Annual calibration
			Campbell Scientific
			€200
			Staffing approx. 2
			hour/week (unless
			use Met Éireann)
IMPACTS			
Aerial survey	Repeated every 10	Published on-line.	Site specific cost to
	years. Covering	Archived by OPW,	be determined with
	extent of protected	copies at each	consultant
	area. High resolution	site	
	recording. Lidar		
	preferably		

Monitor	Specifications	Data management	Cost/site
Field survey	Repeated every 3-5	As above	Site specific cost to
	years, select		be determined with
	representative		consultant
	areas with DoEHLG		
Structural survey	Repeated every 3-5	As above	Site specific cost to
	years, key		be determined with
	monuments		consultant
	identified with OPW		
Species surveys	Repeated at regular	As above,	Suggested donation
	intervals –	depending on	for Rothamsted
	dependant on	partners agreement;	moth traps is
	expert advice.	National Biodiversity	€5000/year (service
	Butterflies &	Centre, Birdwatch	currently free) + 15
	biological growth on	Ireland, Botanic	minutes/day
	stones most NB.	Gardens etc.	staff/volunteer time.
	Corn-crakes		Specialist survey -
	secondary		specific cost to be
			determined with
			consultant
Stone	Once only	Archived by OPW,	Cost to be
characterisation	laboratory testing of	copies at each site	determined with
	stone properties		consultant
Laser scan	Repeat every 3-5	Published on-line	Site specific cost to
	years, key stone	Archived by OPW,	be determined with
	details identified	copies at each site	consultant
	with OPW/DoEHLG	depending on	
		partner/consultant	
		agreement	

Monitor	Specifications	Data management	Cost/site
Photographic record	Repeat every year;	Published on-line	2-4 staff days/year.
	write clear	Archived by OPW,	Camera equipment
	methodology to	copies at each site	made available
	enable accurate		
	repetition under		
	similar conditions.		
Peat water content	Monthly manual	As above	€150 equipment +
(Clonmacnoise	dipping acc. To		6 days/year
only)	IPCC guidelines		staff/volunteer.
Soil moisture	Permanent,	As above	€ 149 & €2.65 /m
	automatic soil		cable (Campbell
	moisture		CS616 requires
	measurement at		direct connection to
	climate station		data logger) + 1
	and/or manual		day/year staff.
	monthly		€700 (CD620
	measurement		Portable field unit) +
	across site (NB at		half day/month
	Brú na Bóinne)		staff/volunteer
Moisture in walls &	Annual scan using	As above,	Site specific cost to
stone	Rilem test/thermo	depending on	be determined with
	imaging/laser scan	partner/consultant	consultant
		agreement	

Monitor	Specifications	Data management	Cost/site
Flooding	Water level at	Published on-line	Flood level gauge
	Clonmacnoise:	Archived by OPW,	€650 OTT
	Manual readings	copies at each site	Or Automatic water
	from on site flood		level sensor €2,500
	level gauge		OTT (Clonmacnoise
	benchmarked		only)
	against OPW		+
	hydrometric		Flood extent
	readings or		markers Or
	Automatic water		Topographic survey
	level sensor.		(site specific cost to
	Both sites: Flood		be determined with
	extent determination		consultant)
	using markers or		+
	survey.		Staff time
Water table	Bore hole or well	As above,	Manual dipping
	monthly dipping or	depending on	(electronic well
	permanent sensor	partner agreement.	sounder) portable &
	preferably in		can be used at
	partnership with		multiple spots e.g.
	EPA or GSI		OTT (600 Euro) +
			half day/month
			staff/volunteer time
			Or
			Automatic water
			level sensor e.g
			Campell Scientific
			(560 Euro) installed
			at one point.

6. CHALLENGES

- Uncertainties inherent in future climate change scenarios mean that predictions for the impacts on heritage can only be approximated. It may be the case that as climate change evolves new threats may emerge, and the monitoring scheme will have to be flexible to meet this challenge.
- Planning permission, ministerial consent and possible OUV issues for a Met Éireann Tucson station at Brú na Bóinne may be problematic given the requirement for a permanent 10m mast (see 3.1.1).
- The availability of human resources at each site for maintenance, calibration, data collection and processing is a key issue. Staff and volunteer continuity is vital to ensuring the long term viability of this study.
- Data management, including collection, downloading and backup, will be done at each site. However, a centralised system of archiving would also need to be devised. Met Éireann have agreed to archive the climatological results (see 3.1) which is an ideal solution for this particular data.
- Funding of the project needs to be secured over the long-term in order to ensure that the initial investment in capital outlay returns a benefit.
- The final selection and location of sensors must be done in conjunction with local staff and relevant experts to ensure the most pragmatic and effective decisions are made.
- Opportunities for inter-departmental co-operations & partnerships have been flagged at several points in the recommendations and it is felt that if pursued from within the DoEHLG these could be very fruitful.
- The dissemination of results to the public at large requires some additional resources but could bring substantial added value to the project (see 4)

7. BENEFITS

Although climate change science is constantly improving, predictions for the future will always contain a degree of uncertainty. It is clear however that climate change is occurring, and that it will come to affect the conservation of our heritage in the future. Establishing a monitoring scheme at Brú na Bóinne and Clonmacnoise will therefore provide much needed quantifiable data on climate change impacts. Although we cannot confidently attribute results to climate change until around 30 years of data has been

collected, conservation and management responses can be implemented immediately. Results from the scheme can feed into sustainable management systems for mitigation and adaptation. Therefore although this project is envisaged as a legacy for the future it is also an aid to current conservation and management at the sites and could potentially inform Government policy on climate change.

Research into climate change impacts on cultural heritage is in its infancy internationally and no similar scheme has yet been implemented. This project thus represents a significant contribution to knowledge. It will see Ireland at the forefront of international research in this area and Irish World Heritage potentially becoming a best practice model for UNESCO. In time it would be desirable to extend the monitoring scheme to include other geographical and typological sites in Ireland and internationally, in cooperation with the World Heritage network of sites.

The global network of the World Heritage Sites is ideally suited to build public and political support through improved information dissemination and effective communication on the subject [of climate change], given the high profile nature of these sites.

UNESCO Director General Koichiro Matsuura, Nairobi 2006

APPENDIX 1. Causal model of vulnerability of Brú na Bóinne to predicted climate change to 2099.

Climatic Factor	Sector or W. H. Value	Impact	Indicator	Sensitivity	Exposure	Adaptive Capacity	Measure of Vulnerability
Increased Temperature	Rock Art	Accelerated chemical weathering	$SO_2 \text{ conc.}$ = 2µg/m ³ & decreasing	Low (1)	Low (1)	Low (-1)	Low (1)
Increased Temperature	Rock Art	Increased biological action	Nitrates conc. = 4µg/m ³ & increasing	Low (1)	Medium (2)	Low (-1)	Medium (2)
Increased Temperature	Rock Art	Cryoclastic weathering	T < 0°C = reduced 80%(2080)	High (3)	Low (1)	High (-3)	Low (1)
Increased Temperature	Rock Art	Thermoclastic weathering		Low (1)	Low (1)	Low (-1)	Low (1)
Increased Wind & extr. rainfall	Rock Art	Mechanical weathering	Abrasion resistance = 88.3%	Low (1)	Medium (2)	Medium (- 2)	Low (1)
Increased Temperature & Rainfall	Rock Art	Wet dry cycles		Medium (2)	High (3)	Medium (- 2)	High (3)
Increased Temperature & Rainfall	Rock Art	Salt crystallisation	Information resources 07-08	Low (1) or Medium (2)	High (3)	Low (-1)	High (3+)
Increased Wind	Megalithic Tombs	Structural damage		Low (1)	Medium (2)	Medium (- 2)	Low (1)
Increased Rainfall	Megalithic Tombs	Flooding		Medium (2)	Medium (2)	Low (-1)	High (3)
Increased Rainfall	Megalithic Tombs	Collapse (landslide)		Medium (2)	Medium (2)	Medium (- 2)	Medium (2)
Decreased Rainfall (summer)	Megalithic Tombs	Subsidence (drought)		Low (1)	Low (1)	Low (-1)	Low (1)
Decreased Rainfall (summer)	Cultural Landscape (archaeology)	Reduction in water table	Population pressure +18%	High (3)	Low (1)	Medium (- 2)	Medium (2)
Increased Temperature (summer)	Cultural Landscape (natural her.)	Change to Biodiversity		Medium ? (2)	Medium (2)	Low (-1)	High (3)
Increased Temperature (summer)	Cultural Landscape (agriculture)	Increased plough damage	Tilled farmland 2000 = 16.2%	High (3)	High (3)	Medium (- 2)	High (3+)

Climatic Factor	Sector or W. H. Value	Impact	Indicator	Sensitivity	Exposure	Adaptive Capacity	Measure of Vulnerability
Increased Rainfall	Cultural Landscape	Landslide	Caine's threshold	Low (1)	Low (1)	Low (-1)	Low (1)
Incr Rain /Sea level	Cultural Landscape	Flooding	% M/FL 20m=10%	Medium (2)	High (2) Expected x2 flood magnitude on Boyne (Sweeney et al 08)	Low (-1)	High (3+)

Source: Daly 2009

APPENDIX 2. Causal model of vulnerability of Clonmacnoise to predicted climate change to 2099.

Climatic Factor	Sector or W. H. Value	Impact	Indicator	Sensitivity	Exposure	Adaptive Capacity	Measure of Vulnerability
Increased Temperature	Architectural ensemble	Increased biological action	Red growth on SW gables of houses (Tom Moore)	Limestone = 2.5 Sandstone = 1.5	Carved crosses and slabs protected indoors. Rest of stonework exposed = 2	Lack of research & no response plan = -1	Limestone = 3+ Sandstone = 2.5
Increased Temperature	Architectural ensemble	Cryoclastic weathering	T < 0°C = 93% reduction by 2099	Limestone = 1.5 Sandstone = 2	Expected to decrease rapidly = 1	No steps to manage risk = -1	Limestone = 1.5 Sandstone = 2
Increased Wind & extr. rainfall	Architectural ensemble	Mechanical weathering (wind driven rain)	Abrasion resistance = ??	Limestone = 2 Sandstone = 2.5	Prevailing wind S/SW. Most exposed on W/NW side = 2	Ongoing conservation works, research on consolidation = -2	Limestone = 2 Sandstone = 3
Increased Temperature & Rainfall	Architectural ensemble	Wet dry cycles	Clay content of stone	Limestone = 2 Sandstone = 2.5	Carved crosses and slabs protected indoors. Rest of stonework exposed = 2	Ongoing conservation works, research on consolidation = -2	Limestone = 2 Sandstone = 3
Increased Temperature & Rainfall	Architectural ensemble	Salt crystallisa- tion	Soluble salt content of stone	Limestone = 1 Sandstone = 2	Carved crosses and slabs protected indoors. Rest of stonework exposed = 2	Ongoing conservation works, research on consolidation = -2	Limestone = 1 Sandstone = 2
Increased Rainfall	Architectural ensemble	Clean rain dissolution		Limestone = 2 Sandstone = 1	Carved crosses and slabs protected indoors. Rest of stonework exposed = 2	Ongoing conservation works, research on consolidation = -2	Limestone = 2 Sandstone = 1
Increased	Architectural	Structural		Unknown –	Prevailing	Ongoing	2

Climatic Factor	Sector or W. H. Value	Impact	Indicator	Sensitivity	Exposure	Adaptive Capacity	Measure of Vulnerability
Wind	ensemble	damage		shape, height, integrity = 2?	wind S/SW. Most exposed on W/NW side = 2	conservation & maintenance = -2	
Increased Rainfall	Architectural ensemble	Flooding		Varies dep on structure = 2	Location on river = 3	Current protection = -1	3
Increased Rainfall	Architectural ensemble	Collapse (landslide)		Well drained soil = 1	Steep multi- level gradient of site = 2	Lack of data = -1	2
Decreased Rainfall (summer)	Architectural ensemble	Subsidence (drought)		Sandy well drained soil = 1	Proximity to river = 1	Lack of data = -1	1
Decreased Rainfall (summer)	Cultural Landscape	Deterioration of peatland	Water levels	Growth of peat forming mosses = 3	By 2055 32% raised bogs pred. loss = 3	Science is done, no plans in place = -2	3+
Increased Temperature (summer)	Cultural Landscape (natural her.)	Change to Biodiversity	Butterfly lifecycle	Varies dep on species & habitat, generally high = 3	Varies between migrating and native = 2	Protected areas of WH site offers some buffer = -2	3
Increased Temperature (summer)	Cultural Landscape	Change in agricultural practices	% land under tillage	Landscape of eskers, archaeologic al remains = 3	Current practices also dep on social and economic issues = 1	Protective legislation would limit impact of any shift to arable = -3	1
Increased Rainfall	Cultural Landscape	Landslide	Caine's threshold	Well drained sandy soils = 1	Rainfall predictions do not meet Caine's threshold = 1	No data on risk = -1	1
Increased Rainfall	Cultural Landscape	Flooding	OPW hydrometri c levels on Shannon	Combination of well draining eskers, floodplains and peatland = 1	Location on Shannon = 3	Ability of peatland to absorb water and slowly release it = 3	1

Source: Daly 2009

REFERENCES

Daly, C. 2009 *Climate Change and World Heritage; A Vulnerability Assessment of Brú na Bóinne Ireland* Thesis submitted for Masters in World Heritage Studies, Brandenburg Technical University Cottbus.,unpublished.

Department of Environment Heritage and Local Government & OPW, 2009 The Monastic City of Clonmacnoise and its Cultural Landscape, Draft Management Plan 2009-2014.

Duchas The Heritage Service 2002 *Brú na Bóinne World Heritage Site Management Plan*. Department of Environment and Local Government.

Eogan, G. 1986. *Knowth and the Passage-tombs of Ireland*. Thames & Hudson Ltd. London.

Fealy, R. and J. Sweeney, 2008 (in press). 'Statistical downscaling of temperature, radiation and potential evapotranspiration to produce a multiple GCM ensemble mean for a selection of sites in Ireland' in *Irish Geography*.

Fealy, R. and J. Sweeney, 2007. 'Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach' in *International Journal of Climatology*, 27, 2083-2094.

ICOMOS, 1993. *Bend of the Boyne,* Advisory Body Evaluation No.659. Online: www.whc.unesco.org.

Jones.M.B, Donnelly, A. and Albanito, F. 2006, *The Physical Science Basis Report Biology and Environment*. Proceedings of the Royal Irish Academy. 10B, 323-334.

Sabbioni, C. Brimblecombe, P. and Cassar, M. 2010. *The Atlas of Climate Change Impact on European Cultural Heritage*, Anthem Press.

Schroter, D., C. Polsky and A. G. Patt. 2005. Assessing Vulnerabilities to the effects of Global Change: An Eight Step Approach. *Mitigation and Adaptation Strategies for Global Change* (2005) 10: 573–596. Springer.

Sweeney, J., Albanito, F., Brereton, A., Caffarra, A., Charlton, R., Donnelly, A., Fealy, R., Fitzgerald, J., Holden, N., Jones, M., Murphy, C. 2008. *Climate Change – Refining the Impacts for Ireland*, STRIVE Report. Published by the Environmental Protection Agency of Ireland (www.epa.ie)

Sweeney, J. and R. Fealy, 2006. 'Downscaling Global Climate Models for Ireland: Providing future Climate Scenarios'. *Proceedings of the National Hydrology Seminar 2006*, 8-18.

Sweeney, J., T. Brereton, C. Byrne, R. Charlton, C. Emblow, R. Fealy, N. Holden, M. Jones, A. Donnelly, S. Moore, P. Purser, K. Byrne, E. Farrell, E. Mayes, D. Minchin, Jim Wilson, & John Wilson. 2003. *Climate Change, Scenarios & Impacts for Ireland.* Final Report prepared for the Environmental Protection Agency by the Department of Geography, National University of Ireland, Maynooth. Published by the Environmental Protection Agency, Ireland. Online:www.epa.ie (12.11.07). World Meteorological Organization 2008 *WMO Guide to Meteorological Instruments and Methods of Observation* WMO No. 8 7th Edition.

(http://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/CIMO_Guide-7th_Edition-2008.html)

LIST OF CONTRIBUTORS

Contact	Institution
Anja Murray	An Taisce
Anita Donaghy	Birdwatch Ireland
Olivia Crowe	Birdwatch Ireland
	Centro Universitario Europeo per i Beni
Pro. R Lefevre	Culturali, Ravello & University of Paris
	Department of Environment, Heritage and
Clare Tuffy	Local Government
	Department of Environment, Heritage and
Dr Freddie O'Dwyer	Local Government
	Department of Environment, Heritage and
Dr Jim Ryan	Local Government
	Department of Environment, Heritage and
Heather King	Local Government
	Department of Environment, Heritage and
Joe Norton	Local Government
Mana Ditabia	Department of Environment, Heritage and
Marc Ritchie	Local Government
Martin Calreever	Department of Environment, Heritage and Local Government
Martin Colreavy	
Willie Cumming	Department of Environment, Heritage and Local Government
Willie Cumming Dr Mary Tubridy	Ecological consultants
Micheal MacCarthaigh	Environmental Protection Agency
Tom O'Reilly	Environmental Protection Agency
Council of Europe	Eur-opa major hazards agreement
Caoimhe Hickey	Geological Survey of Ireland
Sarah Gatley	Geological Survey of Ireland
Chris Sanders	Glasgow Caledonian University
Paul Baker	Glasgow Caledonian University
Beatrice Kelly	Heritage Council
Frankie Quinn	Historic Scotland
Peter Ranson	Historic Scotland
Rob Thomson	Historic Scotland
Pamela Jerome	ICOMOS International
Susan Barr	ICOMOS Norway
Alossandra Bonazza	Institute of Atmospheric Sciences and
Alessandra Bonazza Richella Duggan	Climate, Bologna & Noah's Ark Irish Peatland Conservation Council
Liz McManus TD	Labour Party
David Fitzgerald	Met Eireann
Séamus Walsh	Met Eireann
Dr Eugenie Regan	National Biodiversity Data Centre
	Office of Public Works
Aighleann O'Shaughnessy	
Ana Dolan	Office of Public Works
Grellan Rourke	Office of Public Works

Contact	Institution
Jim Casey	Office of Public Works
Mark Adamson	Office of Public Works
Paul McMahon	Office of Public Works
Tom Moore	Office of Public Works
	Office of Public Works (Flood relief
Gerry Gallagher	mapping)
Peter Newport	Office of Public Works, Headford, Galway
John Meneely	Queens University Belfast
Prof. Bernie Smith	Queens University Belfast
John Rosser	Scottish National Trust
Kate Mavor	Scottish National Trust
Ken Bond	University College Cork
	University of East Englia & Noah's Ark
Prof. Peter Brimblecombe	(EU) http://noahsark.isac.cnr.it/
Rebecca Loader	University of Exeter
Neza Cebron Lipovec	University of Leuven
Tom Cosgrove	University of Limerick
Prof. John Sweeney	National University of Ireland, Maynooth

SUPPLIERS

Campbell Scientific: Campbell Scientific Ltd., Campbell Park, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, United Kingdom. Phone: +44 (0) 1509 601141. Email: sales@campbellsci.co.uk Website: www.campbellsci.co.uk. Quotations by Nigel Wills, Senior Applications Engineer, Email: nigel.wills@campbellsci.co.uk

OTT Hygrometry Ltd: Unit 36 Criftin Enterprise Centre, Oxton Road, Epperstone Nottingham NG 14 6 AT, United Kingdom. Phone: +44 / 115 / 9 65 65 49. Email: sales@ott-hydrometry.co.uk Website: www.ott-hydrometry.co.uk. Irish agent: Ronan O'Maitiu, phone 045 901877.

Vaisala: Unit W4i, Tougher Business Park, Newbridge Road, Naas, Co. Kildare. Phone: 045 409224. Email: info@howard.ie Website: www.howard.ie

